
1

Prepared by Mrs. V. R. Sonar

Chapter 2
Searching:

 Searching is the process of finding a given value position in a list of values.

 It decides whether a search key is present in the data or not.

 It is the algorithmic process of finding a particular item in a collection of items.

 It can be done on internal data structure or on external data structure.

There are two popular algorithms available:

1. Linear Search

2. Binary Search

1. Linear Search/ Sequential Search:

 Sequential search is also called as Linear Search.

 Sequential search starts at the beginning of the list and checks every element of the list.

 It is a basic and simple search algorithm.

 Sequential search compares the element with all the other elements given in the list. If the element is

matched, it returns the value index, else it returns -1.

The above figure shows how sequential search works. It searches an element or value from an array

till the desired element or value is not found. If we search the element 25, it will go step by step in a

sequence order. It searches in a sequence order. Sequential search is applied on the unsorted or

unordered list when there are fewer elements in a list.

Algorithm

LinearSearch (Array A, Value x)

Step 1: Set i to 1

Step 2: if i > n then go to step 7

Step 3: if A[i] = x then go to step 6

Step 4: Set i to i + 1

Step 5: Go to Step 2

Step 6: Print Element x Found at index i and go to step 8

Step 7: Print element not found

Step 8: Exit

2

Prepared by Mrs. V. R. Sonar

Linear Search Example

Let us take an example of an array A[7]={5,2,1,6,3,7,8}. Array A has 7 items. Let us assume we are

looking for 7 in the array. Targeted item=7.

Here, we have

A[7]={5,2,1,6,3,7,8}

X=7

At first, When i=0 (A[0]=5; X=7) not matched

i++ now, i=1 (A[1]=2; X=7) not matched

i++ now, i=2(A[2])=1; X=7)not matched

…

….

i++ when, i=5(A[5]=7; X=7) Match Found

Hence, Element X=7 found at index 5.

Linear search is rarely used practically. The time complexity of above algorithm is O(n).

int linearSearch(int values[], int target, int n)

{

 for(int i = 0; i < n; i++)

 {

 if (values[i] == target)

 {

 return i;

 }

 }

 return -1;

}

Program for Sequential Search

#include <stdio.h>

int main()

{

 int arr[50], search, cnt, num;

 printf("Enter the number of elements in array\n");

 scanf("%d",&num);

3

Prepared by Mrs. V. R. Sonar

 printf("Enter %d integer(s)\n", num);

 for (cnt = 0; cnt < num; cnt++)

 scanf("%d", &arr[cnt]);

 printf("Enter the number to search\n");

 scanf("%d", &search);

 for (cnt = 0; cnt < num; cnt++)

 {

 if (arr[cnt] == search) /* if required element found */

 {

 printf("%d is present at location %d.\n", search, cnt+1);

 break;

 }

 }

 if (cnt == num)

 printf("%d is not present in array.\n", search);

 return 0;

}

2. Binary Search Algorithm

 Binary Search is used for searching an element in a sorted array.

 It is a fast search algorithm with run-time complexity of O(log n).

 Binary search works on the principle of divide and conquer.

 This searching technique looks for a particular element by comparing the middle most element of

the collection.

 It is useful when there are large number of elements in an array.

In binary search, we follow the following steps:

1. We start by comparing the element to be searched with the element in the middle of the list/array.

2. If we get a match, we return the index of the middle element.

3. If we do not get a match, we check whether the element to be searched is less or greater than in

value than the middle element.

4. If the element/number to be searched is greater in value than the middle number, then we pick

the elements on the right side of the middle element(as the list/array is sorted, hence on the right,

we will have all the numbers greater than the middle number), and start again from the step 1.

5. If the element/number to be searched is lesser in value than the middle number, then we pick the

elements on the left side of the middle element, and start again from the step 1.

4

Prepared by Mrs. V. R. Sonar

Binary Search is useful when there are large number of elements in an array and they are sorted.

So a necessary condition for Binary search to work is that the list/array should be sorted.

 The above array is sorted in ascending order. As we know binary search is applied on sorted lists

only for fast searching.

For example, if searching an element 25 in the 7-element array, following figure shows how binary

search works:

Binary searching starts with middle element. If the element is equal to the element that we are

searching then return true. If the element is less than then move to the right of the list or if the

element is greater than then move to the left of the list. Repeat this, till you find an element.

Features of Binary Search

1. It is great to search through large sorted arrays.

2. It has a time complexity of O(log n) which is a very good time complexity. We will discuss this

in details in the Binary Search tutorial.

3. It has a simple implementation.

Algorithm

Step 1: Data list must be ordered list in ascending order.

Step 2: Probe middle of list

Step 3: If target equals list[mid], FOUND.

Step 4: If target < list[mid], discard 1/2 of list between list[mid] and list[last].

https://www.studytonight.com/data-structures/binary-search-algorithm

5

Prepared by Mrs. V. R. Sonar

Step 5: If target > list[mid], discard 1/2 of list between list[first] and list[mid].

Step 6: Continue searching the shortened list until either the target is found, or there are no elements t

o probe.

Binary Search Example

Let us take an example of an array A[16]={1,2,3,4,6,7,8,10,12,13,15,16,18,19,20,22}. The array is

sorted and contains 16 items. We are looking for item 19 in this list.

Here, we have

A[16]={1,2,3,4,6,7,8,10,12,13,15,16,18,19,20,22}

X=19

Let us first divide it into two smaller arrays of 8 items each. The first 8 items in a sub array and

another 8 in another sub array. A1={1,2,3,4,6,7,8,10} and A2={12,13,15,16,18,19,20,22}

As 10 and 12 are the middle items of this ordered array, we know 19 is greater than the middle

numbers that means we don’t require to look for the targeted item in first sub array. Let us search in

the second subarray A2={12,13,15,16,18,19,20,22}

In the second array we have 8 items. Let’s divide them into two equal arrays and check the middle

items. Here the middle items are 16 and 18. As 19 is greater than both of them, we don’t need to look

in the first four items of this subarray. A21={12,13,15,15} and A22={18,19,20,22}

Let us look in the last four items sub array A22={18,19,20,22}. Let us again divide it to subarrays

A221={18,19) and A222={20,22}. Here the middle items are 19 and 20. Hence, we found the target

item 19 in first subarray.

Program for Binary Search

#include<stdio.h>

#include<conio.h>

void main()

{

 int f, l, m, size, i, sElement, list[50]; //int f, l ,m : First, Last, Middle

 clrscr();

 printf("Enter the size of the list: ");

 scanf("%d",&size);

 printf("Enter %d integer values : \n", size);

 for (i = 0; i < size; i++)

 scanf("%d",&list[i]);

 printf("Enter value to be search: ");

 scanf("%d", &sElement);

6

Prepared by Mrs. V. R. Sonar

 f = 0;

 l = size - 1;

 m = (f+l)/2;

 while (f <= l) {

 if (list[m] < sElement)

 f = m + 1;

 else if (list[m] == sElement) {

 printf("Element found at index %d.\n",m);

 break;

 }

 else

 l = m - 1;

 m = (f + l)/2;

 }

 if (f > l)

 printf("Element Not found in the list.");

 getch();

}

Sorting:
Sorting refers to arranging data in a particular format. Sorting algorithm specifies the way to

arrange data in a particular order.

Bubble Sort
Bubble sort is the simplest sorting algorithm. It is based on comparison where each adjacent pair of

element is compared and swapped if they are not in order. It works by repeatedly stepping through

the list to be sorted, comparing two items at a time and swapping them if they are in the wrong order.

The pass through the list is repeated until no swaps are needed, which means the list is sorted. This

algorithm is not suitable for huge data sets. Average and worst case time complexity of this

algorithm are of Ο(n2) where n is the number of items.

Algorithm

for i=N-1 to 2 {

set swap flag to false

for j=1 to i {

if list[j-1] > list[j]

swap list[j-1] and list[j]

set swap flag to true

}

if swap flag is false, break. The list is sorted.

}

7

Prepared by Mrs. V. R. Sonar

[NOTE: In each pass, the largest item “bubbles” down the list until it settles in its final position. This

is where bubble sort gets its name.]

Example,

Suppose we have a list of array of 5 elements A[5]={40,50,30,20,10}. We have to sort this array

using bubble sort algorithm.

We observe in algorithm that Bubble Sort compares each pair of array element unless the whole

array is completely sorted in an ascending order. After every iteration the highest values settles down

at the end of the array. Hence, the next iteration need not include already sorted elements.

void bubbleSort(int arr[], int n)

{

 int i, j, temp;

 for(i = 0; i < n; i++)

 {

 for(j = 0; j < n-i-1; j++)

 {

 if(arr[j] > arr[j+1])

 {

// swap the elements

 temp = arr[j];

 arr[j] = arr[j+1];

 arr[j+1] = temp;

 }

 }

}

Advantages Disadvantages

The primary advantage of the bubble sort is that it is

popular and easy to implement.

The main disadvantage of the bubble sort is the fact

that it does not deal well with a list containing a huge

number of items.

In the bubble sort, elements are swapped in place

without using additional temporary storage.

The bubble sort requires n-squared processing steps

for every n number of elements to be sorted.

The space requirement is at a minimum The bubble sort is mostly suitable for academic

teaching but not for real-life applications.

8

Prepared by Mrs. V. R. Sonar

 Selection Sort
Selection sort is an in-place comparison sort algorithm. In this algorithm, we repeatedly select the

smallest remaining element and move it to the end of a growing sorted list. It is one of the simplest

sorting algorithm. Selection sort is known for its simplicity. It has performance advantages over

more complicated algorithms in certain situations.

This algorithm is not suitable for large data sets as its average and worst case complexities are

of Ο(n2), where n is the number of items.

Algorithm

Step 1: Set MIN to location 0

Step 2: Search the minimum element in the list

Step 3: Swap with value at location MIN

Step 4: Increment MIN to point to next element

Step 5: Repeat until list is sorted

Example,

Let us assume an array A[10]={45,20,40,05,15,25,50,35,30,10}. We have to sort this array using

selection sort.

In this algorithm we have to find the minimum value in the list first. Then, Swap it with the value in

the first position. After that, Start from the second position and repeat the steps above for remainder

of the list.

// function to look for smallest element in the given subarray

int indexOfMinimum(int arr[], int startIndex, int n)

{

 int minValue = arr[startIndex];

 int minIndex = startIndex;

 for(int i = minIndex + 1; i < n; i++)

 {

9

Prepared by Mrs. V. R. Sonar

 if(arr[i] < minValue)

 {

 minIndex = i;

 minValue = arr[i];

 }

 }

 return minIndex;

}

void selectionSort(int arr[], int n)

{

 for(int i = 0; i < n; i++)

 {

 int index = indexOfMinimum(arr, i, n);

 swap(arr, i, index);

 }

}

Advantages Disadvantages

The main advantage of the selection sort is that it

performs well on a small list.

The primary disadvantage of the selection sort is

its poor efficiency when dealing with a huge list

of items.

Because it is an in-place sorting algorithm, no

additional temporary storage is required beyond

what is needed to hold the original list.

The selection sort requires n-squared number of

steps for sorting n elements.

Its performance is easily influenced by the initial

ordering of the items before the sorting process.

Quick Sort is much more efficient than

selection sort

Insertion Sort

Insertion sort is an in-place sorting algorithm based on comparison. It is a simple algorithm where a

sorted sub list is maintained by entering on element at a time. An element which is to be inserted in

this sorted sub-list has to find its appropriate location and then it has to be inserted there. That is the

reason why it is named so. This algorithm is not suitable for large data set.

Average and worst case time complexity of the algorithm is Ο(n2), where n is the number of items.

Algorithm

Step 1: If it is the first element, it is already sorted. return 1;

Step 2: Pick next element

Step 3: Compare with all elements in the sorted sub-list

Step 4: Shift all the elements in the sorted sub-list that is greater than the value to be sorted

Step 5: Insert the value

Step 6: Repeat until list is sorted

10

Prepared by Mrs. V. R. Sonar

Example,

Let us take an example of an array A[6]={20,10,30,15,25,05}. We have to sort this array using

insertion sort.

void insertionSort(int arr[], int length)

{

 int i, j, key;

 for (i = 1; i < length; i++)

 {

 j = i;

 while (j > 0 && arr[j - 1] > arr[j])

 {

 key = arr[j];

 arr[j] = arr[j - 1];

 arr[j - 1] = key;

 j--;

 }

 }

}

Advantages Disadvantages

The main advantage of the insertion sort is its

simplicity.

The disadvantage of the insertion sort is that it does

not perform as well as other, better sorting

algorithms

It also exhibits a good performance when dealing

with a small list.

With n-squared steps required for every n element to

be sorted, the insertion sort does not deal well with a

huge list.

The insertion sort is an in-place sorting algorithm so

the space requirement is minimal.

The insertion sort is particularly useful only when

sorting a list of few items.

11

Prepared by Mrs. V. R. Sonar

 Quick Sort

Quick sort is a well-known sorting algorithm. It is highly efficient and also known as partition

exchange sort. In this sorting algorithm the array is divided into 2 sub array. One contain smaller

values than pivot value and other array contain elements having greater values than pivot value.

Pivot is an element that is used to compare and divide the elements of the main array into two. Quick

sort partitions an array and then calls itself recursively twice to sort the two resulting sub arrays. This

algorithm is quite efficient for large data sets.

The Average and worst case complexity are of this algorithm is Ο(n2), where n is the number of

items.

Algorithm

Step 1: Choose the highest index value has pivot

Step 2: Take two variables to point left and right of the list excluding pivot

Step 3: left points to the low index

Step 4: right points to the high

Step 5: while value at left is less than pivot move right

Step 6: while value at right is greater than pivot move left

Step 7: if both step 5 and step 6 does not match swap left and right

Step 8: if left ≥ right, the point where they met is new pivot

In practice, quick sort is faster than other sorting algorithms because its inner loop can be efficiently

implemented on most architectures, and in most real-world data it is possible to make design choices

which minimize the possibility of require time.

Example,

Let us assume an array A[10]={42,37,11,98,36,72,65,10,88,78}. We have to sort this array using

quick sort.

12

Prepared by Mrs. V. R. Sonar

// to swap two numbers

void swap(int* a, int* b)

{

 int t = *a;

 *a = *b;

 *b = t;

}

/* a[] is the array, p is starting index, that is 0, and r is the last index of array. */

void quicksort(int a[], int p, int r)

{

 if(p < r)

 {

 int q;

 q = partition(a, p, r);

 quicksort(a, p, q);

 quicksort(a, q+1, r);

 }

}

int partition (int a[], int low, int high)

{

 int pivot = arr[high]; // selecting highest element as pivot

 int i = (low - 1); // index of smaller element

 for (int j = low; j <= high- 1; j++)

 {

// If current element is smaller than or equal to pivot

 if (arr[j] <= pivot)

13

Prepared by Mrs. V. R. Sonar

 {

 i++; // increment index of smaller element

 swap(&arr[i], &arr[j]);

 }

 }

 swap(&arr[i + 1], &arr[high]);

 return (i + 1);

}

Radix sort:

Algorithm:

For each digit i where i varies from the least significant digit to the most significant digit of a number

 Sort input array using count sort algorithm according to ith digit.

We used count sort because it is a stable sort.

Example: Assume the input array is:

10,21,17,34,44,11,654,123

Based on the algorithm, we will sort the input array according to the one's digit

 (least significant digit).

0: 10

1: 21 11

2:

3: 123

4: 34 44 654

5:

6:

7: 17

8:

9:

So, the array becomes 10,21,11,123,24,44,654,17

Now, we'll sort according to the ten's digit:

0:

1: 10 11 17

Advantages Disadvantages

The quick sort is regarded as the best sorting

algorithm.

The slight disadvantage of quick sort is that its

worst-case performance is similar to average

performances of the bubble, insertion or selections

sorts.

It is able to deal well with a huge list of items. If the list is already sorted than bubble sort is much

more efficient than quick sort

Because it sorts in place, no additional storage is

required as well

If the sorting element is integers than radix sort is

more efficient than quick sort.

14

Prepared by Mrs. V. R. Sonar

2: 21 123

3: 34

4: 44

5: 654

6:

7:

8:

9:

Now, the array becomes : 10,11,17,21,123,34,44,654

Finally , we sort according to the hundred's digit (most significant digit):

0: 010 011 017 021 034 044

1: 123

2:

3:

4:

5:

6: 654

7:

8:

9:

The array becomes : 10,11,17,21,34,44,123,654 which is sorted. This is how our algorithm works.

Advantages

1. It is implemented in Java, it would be faster than quicksort or heap.

2. It is stable because it preserves existing order of equals keys.

3. It is good on small keys.

Disadvantages

1. It is not efficient on very long keys because the total sorting time is proportional to key length

and to the number of items to sort.

2. We have to write an unconventional compare routine.

3. It requires fixed size keys and some standard way of breaking the keys to pieces.

